

muRata

Reference Specification

DEA Series

High Temperature Lead Type Disc Ceramic Capacitors of Class 1 for General Purpose

Product specifications in this catalog are as of Dec. 2017, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION**1. OPERATING VOLTAGE**

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the V_{p-p} value of the applied voltage or the V_{o-p} which contains DC bias within the rated voltage range.

When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement					

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. The allowable frequency should be in less than 300kHz in sine wave. Applied voltage should be the load such as self-generated heat is within 5 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

4. LOAD REDUCTION AND SELF-GENERATED HEAT DURING APPLICATION OF HIGH-FREQUENCY AND HIGH-VOLTAGE

Since the heat generated by the low-dissipation capacitor itself is low, its allowable power is much higher than the general B characteristic. However, in case such an applied load that the self-heating temperature

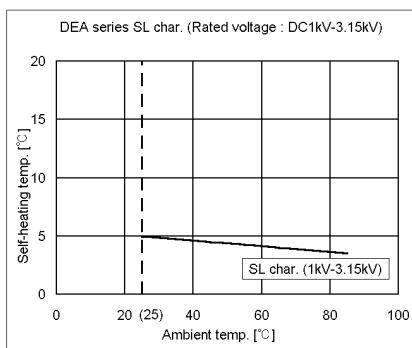
is 20 °C at the rated voltage, the allowable power may be exceeded.

Therefore, when using the low-dissipation capacitors in a high-frequency and high-voltage circuit with a frequency of 1kHz or higher, make sure that the V_{p-p} values including the DC bias, do not exceed the applied voltage value specified in Table 1. Also make sure that the self-heating temperature (the difference between the capacitor's surface temperature and the capacitor's ambient temperature) at an ambient temperature of 25 °C does not exceed the value specified in Table 1.

As shown in Fig. 1, the self-heating temperature depends on the ambient temperature. Therefore, if you are not able to set the ambient temperature to approximately 25 °C, please contact our sales representatives or product engineers.

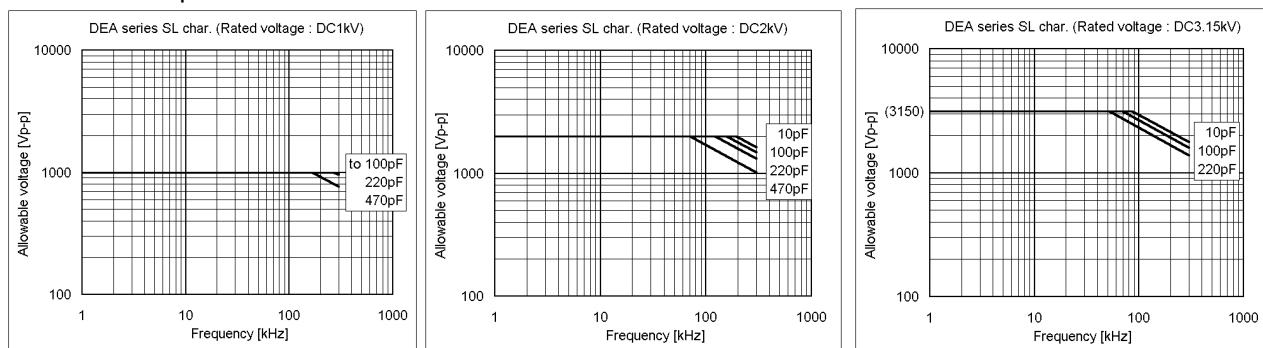
<Table 1> Allowable Conditions at High-frequency

Temp. Char.	DC Rated Voltage	Allowable Conditions at High-frequency *2		Capacitor's Ambient Temp. *1
		Applied Voltage (max.)	Self-heating Temp. (25 °C Ambient Temp.)	
SL	1kV	1000V _{p-p}	5 °C max.	-25 to +85 °C
	2kV	2000V _{p-p}		
	3.15kV	3150V _{p-p}		


*1 When the ambient temperature is 85 to 125 °C, the applied voltage needs to be further reduced.

If the low-dissipation capacitors needs to be used at an ambient temperature of 85 to 125 °C, please contact our sales representatives or product engineers.

*2 Fig. 2 shows reference data on the allowable voltage-frequency characteristic for a sine ave voltage.


Reference only

<Fig. 1> Dependence of Self-heating Temperature on Ambient Temperature

<Fig. 2> Allowable Voltage (Sine Wave Voltage) – Frequency Characteristic [At Ambient Temperature of 85 °C or less]

Because of the influence of harmonics, when the applied voltage is a rectangular wave or pulse wave voltage (instead of a sine wave voltage), the heat generated by the capacitor is higher than the value obtained by application of the sine wave with the same fundamental frequency. Roughly calculated for reference, the allowable voltage for a rectangular wave or pulse wave corresponds approximately to the allowable voltage for a sine wave whose fundamental frequency is twice as large as that of the rectangular wave or pulse wave. This allowable voltage, however, varies depending on the voltage and current waveforms. Therefore, you are requested to make sure that the self-heating temperature is not higher than the value specified in Table 1.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron tip : 400 °C max.

Soldering iron wattage : 50W max.

Soldering time : 3.5 s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile.

So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded

or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%. Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment
2. Aerospace equipment
3. Undersea equipment
4. Power plant control equipment
5. Medical equipment
6. Transportation equipment (vehicles, trains, ships, etc.)
7. Traffic signal equipment
8. Disaster prevention / crime prevention equipment
9. Data-processing equipment exerting influence on public
10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

- Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage.

Please contact us if you use for the strict time constant circuit.

- Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.

2. You are requested not to use our product deviating from this specification.

Reference only

1. Application

This specification is applied to High Temperature Lead Type Disc Ceramic Capacitors of DC1kV ratings and Class 1 of DEA series used for General Electric equipment.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

2. Rating

2-1. Operating temperature range

-25 ~ +125°C

2-2. Part number configuration

ex.)	<u>DEA</u>	<u>1X</u>	<u>3A</u>	<u>561</u>	<u>J</u>	<u>B3</u>	<u>B</u>	<u>Individual</u>
	Series	Temperature characteristic	Rated voltage	Capacitance	Capacitance tolerance	Lead code	Packing style code	specification

- Temperature characteristic

Code	Temperature characteristic
1X	SL

Please confirm detailed specification on [Specification and test methods].

- Rated voltage

Code	Rated voltage
3A	DC1kV

- Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF.
ex.) In case of 561.

$$56 \times 10^1 = 560 \text{ pF}$$

- Capacitance tolerance

Please refer to [Part number list].

- Lead code

Code	Lead style
A*	Vertical crimp long type
C*	Straight long type
B*	Vertical crimp short type
D*	Straight short type
N*	Vertical crimp taping type
P*	Straight taping type

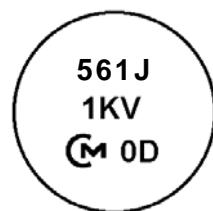
* Please refer to [Part number list].

Solder coated copper wire is applied for termination.

- Packing style code

Code	Packing type
B	Bulk type
A	Ammo pack taping type

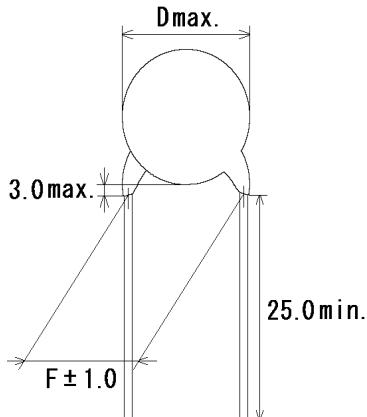
- Individual specification

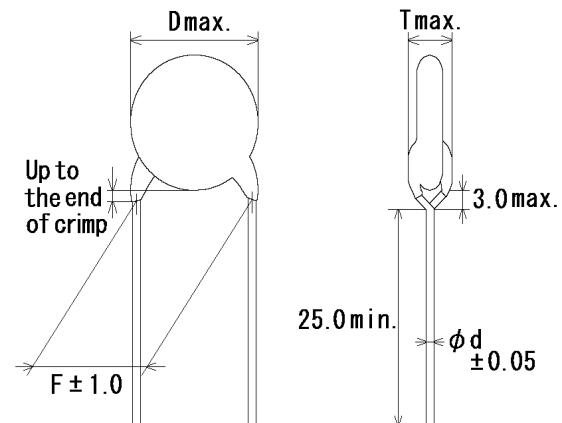

In case part number cannot be identified without 'individual specification' , it is added at the end of part number.

Reference only

3. Marking

Nominal capacitance	: Actual value(under 100pF) 3 digit system(100pF and over)
Capacitance tolerance	: Code (Omitted for maximum body diameter ϕ 6mm and under)
Rated voltage	: Letter code
Company name code	: Abbreviation C
Manufacturing year	: Letter code(The last digit of A.D. year.) (Omitted for maximum body diameter ϕ 5mm and under)
Manufacturing month	: Code (Omitted for maximum body diameter ϕ 5mm and under) $\left. \begin{array}{ll} \text{Feb./Mar.} \rightarrow 2 & \text{Aug./Sep.} \rightarrow 8 \\ \text{Apr./May} \rightarrow 4 & \text{Oct./Nov.} \rightarrow 0 \\ \text{Jun./Jul.} \rightarrow 6 & \text{Dec./Jan.} \rightarrow D \end{array} \right\}$


(Example)

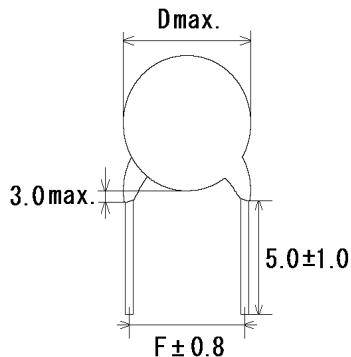

Reference only

4. Part number list

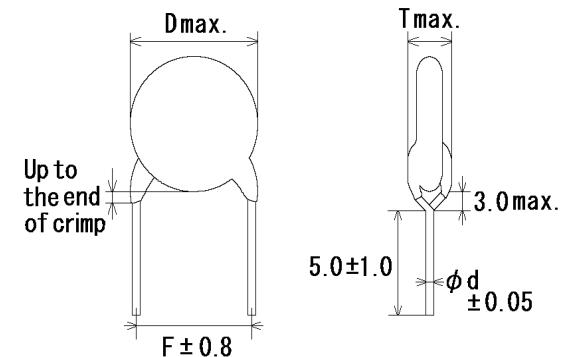
• Straight long type
(Lead code:C*)

• Vertical crimp long type
(Lead code:A*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).


Please see the following list about details.

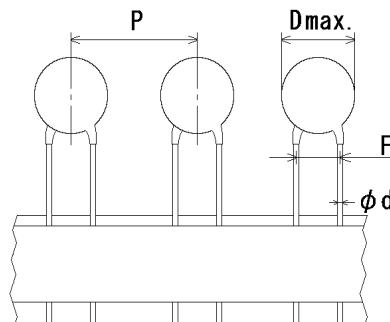
Unit : mm


T.C.	Cap. (pF)	Cap. tol.	Customer Part Number	Murata Part Number	DC Rated Volt. (V)	Dimension (mm)				Lead Code	Pack qty. (pcs)
						D	T	F	d		
SL	10	±5%		DEA1X3A100JC1B	1000	4.5	4.0	5.0	0.5	C1	500
SL	12	±5%		DEA1X3A120JC1B	1000	4.5	4.0	5.0	0.5	C1	500
SL	15	±5%		DEA1X3A150JC1B	1000	4.5	4.0	5.0	0.5	C1	500
SL	18	±5%		DEA1X3A180JC1B	1000	4.5	4.0	5.0	0.5	C1	500
SL	22	±5%		DEA1X3A220JC1B	1000	4.5	4.0	5.0	0.5	C1	500
SL	27	±5%		DEA1X3A270JC1B	1000	4.5	4.0	5.0	0.5	C1	500
SL	33	±5%		DEA1X3A330JC1B	1000	4.5	4.0	5.0	0.5	C1	500
SL	39	±5%		DEA1X3A390JC1B	1000	4.5	4.0	5.0	0.5	C1	500
SL	47	±5%		DEA1X3A470JC1B	1000	4.5	4.0	5.0	0.5	C1	500
SL	56	±5%		DEA1X3A560JC1B	1000	5.0	4.0	5.0	0.5	C1	500
SL	68	±5%		DEA1X3A680JC1B	1000	5.0	4.0	5.0	0.5	C1	500
SL	82	±5%		DEA1X3A820JA2B	1000	6.0	4.0	5.0	0.6	A2	500
SL	100	±5%		DEA1X3A101JA2B	1000	6.0	4.0	5.0	0.6	A2	500
SL	120	±5%		DEA1X3A121JA2B	1000	6.0	4.0	5.0	0.6	A2	500
SL	150	±5%		DEA1X3A151JA2B	1000	7.0	4.0	5.0	0.6	A2	500
SL	180	±5%		DEA1X3A181JA2B	1000	7.0	4.0	5.0	0.6	A2	500
SL	220	±5%		DEA1X3A221JA2B	1000	8.0	4.0	5.0	0.6	A2	250
SL	270	±5%		DEA1X3A271JA2B	1000	9.0	4.0	5.0	0.6	A2	250
SL	330	±5%		DEA1X3A331JA2B	1000	10.0	4.0	5.0	0.6	A2	250
SL	390	±5%		DEA1X3A391JA2B	1000	10.0	4.0	5.0	0.6	A2	250
SL	470	±5%		DEA1X3A471JA2B	1000	11.0	4.0	5.0	0.6	A2	250
SL	560	±5%		DEA1X3A561JA3B	1000	12.0	4.0	7.5	0.6	A3	200

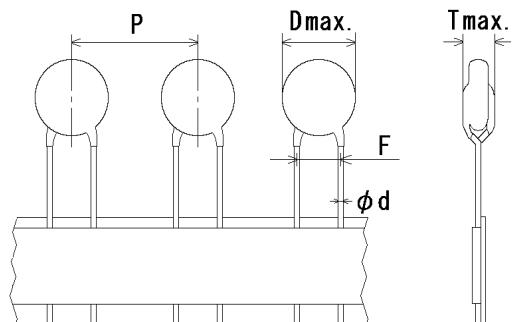
Reference only

·Straight short type
(Lead code:D*)

·Vertical crimp short type
(Lead code:B*)



Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

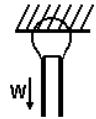
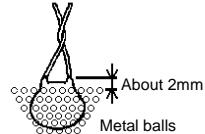

T.C.	Cap. (pF)	Cap. tol.	Customer Part Number	Murata Part Number	DC Rated Volt. (V)	Dimension (mm)				Lead Code	Pack qty. (pcs)
						D	T	F	d		
SL	10	±5%		DEA1X3A100JD1B	1000	4.5	4.0	5.0	0.5	D1	500
SL	12	±5%		DEA1X3A120JD1B	1000	4.5	4.0	5.0	0.5	D1	500
SL	15	±5%		DEA1X3A150JD1B	1000	4.5	4.0	5.0	0.5	D1	500
SL	18	±5%		DEA1X3A180JD1B	1000	4.5	4.0	5.0	0.5	D1	500
SL	22	±5%		DEA1X3A220JD1B	1000	4.5	4.0	5.0	0.5	D1	500
SL	27	±5%		DEA1X3A270JD1B	1000	4.5	4.0	5.0	0.5	D1	500
SL	33	±5%		DEA1X3A330JD1B	1000	4.5	4.0	5.0	0.5	D1	500
SL	39	±5%		DEA1X3A390JD1B	1000	4.5	4.0	5.0	0.5	D1	500
SL	47	±5%		DEA1X3A470JD1B	1000	4.5	4.0	5.0	0.5	D1	500
SL	56	±5%		DEA1X3A560JD1B	1000	5.0	4.0	5.0	0.5	D1	500
SL	68	±5%		DEA1X3A680JD1B	1000	5.0	4.0	5.0	0.5	D1	500
SL	82	±5%		DEA1X3A820JB2B	1000	6.0	4.0	5.0	0.6	B2	500
SL	100	±5%		DEA1X3A101JB2B	1000	6.0	4.0	5.0	0.6	B2	500
SL	120	±5%		DEA1X3A121JB2B	1000	6.0	4.0	5.0	0.6	B2	500
SL	150	±5%		DEA1X3A151JB2B	1000	7.0	4.0	5.0	0.6	B2	500
SL	180	±5%		DEA1X3A181JB2B	1000	7.0	4.0	5.0	0.6	B2	500
SL	220	±5%		DEA1X3A221JB2B	1000	8.0	4.0	5.0	0.6	B2	500
SL	270	±5%		DEA1X3A271JB2B	1000	9.0	4.0	5.0	0.6	B2	500
SL	330	±5%		DEA1X3A331JB2B	1000	10.0	4.0	5.0	0.6	B2	500
SL	390	±5%		DEA1X3A391JB2B	1000	10.0	4.0	5.0	0.6	B2	500
SL	470	±5%		DEA1X3A471JB2B	1000	11.0	4.0	5.0	0.6	B2	500
SL	560	±5%		DEA1X3A561JB3B	1000	12.0	4.0	7.5	0.6	B3	250

Reference only

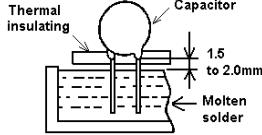
• Straight taping type
(Lead code:P*)

• Vertical crimp taping type
(Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P).
Please see the following list or taping specification about details.



Unit : mm

T.C.	Cap. (pF)	Cap. tol.	Customer Part Number	Murata Part Number	DC Rated volt. (V)	Dimension (mm)					Lead code	Pack qty. (pcs)
						D	T	F	d	P		
SL	10	±5%		DEA1X3A100JP2A	1000	4.5	4.0	5.0	0.6	12.7	P2	1500
SL	12	±5%		DEA1X3A120JP2A	1000	4.5	4.0	5.0	0.6	12.7	P2	1500
SL	15	±5%		DEA1X3A150JP2A	1000	4.5	4.0	5.0	0.6	12.7	P2	1500
SL	18	±5%		DEA1X3A180JP2A	1000	4.5	4.0	5.0	0.6	12.7	P2	1500
SL	22	±5%		DEA1X3A220JP2A	1000	4.5	4.0	5.0	0.6	12.7	P2	1500
SL	27	±5%		DEA1X3A270JP2A	1000	4.5	4.0	5.0	0.6	12.7	P2	1500
SL	33	±5%		DEA1X3A330JP2A	1000	4.5	4.0	5.0	0.6	12.7	P2	1500
SL	39	±5%		DEA1X3A390JP2A	1000	4.5	4.0	5.0	0.6	12.7	P2	1500
SL	47	±5%		DEA1X3A470JP2A	1000	4.5	4.0	5.0	0.6	12.7	P2	1500
SL	56	±5%		DEA1X3A560JP2A	1000	5.0	4.0	5.0	0.6	12.7	P2	1500
SL	68	±5%		DEA1X3A680JP2A	1000	5.0	4.0	5.0	0.6	12.7	P2	1500
SL	82	±5%		DEA1X3A820JN2A	1000	6.0	4.0	5.0	0.6	12.7	N2	1500
SL	100	±5%		DEA1X3A101JN2A	1000	6.0	4.0	5.0	0.6	12.7	N2	1500
SL	120	±5%		DEA1X3A121JN2A	1000	6.0	4.0	5.0	0.6	12.7	N2	1500
SL	150	±5%		DEA1X3A151JN2A	1000	7.0	4.0	5.0	0.6	12.7	N2	1500
SL	180	±5%		DEA1X3A181JN2A	1000	7.0	4.0	5.0	0.6	12.7	N2	1500
SL	220	±5%		DEA1X3A221JN2A	1000	8.0	4.0	5.0	0.6	12.7	N2	1500
SL	270	±5%		DEA1X3A271JN2A	1000	9.0	4.0	5.0	0.6	12.7	N2	1500
SL	330	±5%		DEA1X3A331JN2A	1000	10.0	4.0	5.0	0.6	12.7	N2	1500
SL	390	±5%		DEA1X3A391JN2A	1000	10.0	4.0	5.0	0.6	12.7	N2	1500
SL	470	±5%		DEA1X3A471JN2A	1000	11.0	4.0	5.0	0.6	12.7	N2	1500
SL	560	±5%		DEA1X3A561JN3A	1000	12.0	4.0	7.5	0.6	15.0	N3	1000

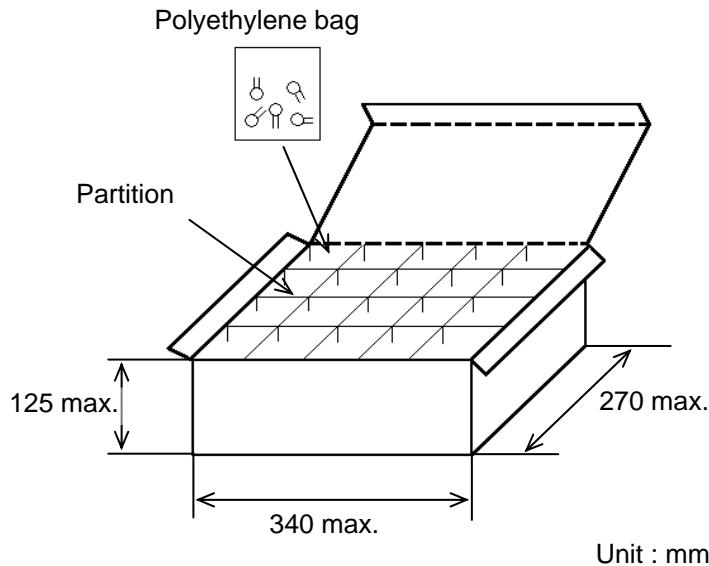

Reference only

5. Specification and test methods													
No.	Item	Specification	Test method										
1	Appearance and dimensions	No marked defect on appearance form and dimensions. Please refer to [Part number list].	The capacitor should be inspected by naked eyes for visible evidence of defect. Dimensions should be measured with slide calipers.										
2	Marking	To be easily legible.	The capacitor should be inspected by naked eyes.										
3	Dielectric strength	Between lead wires	No failure.										
		Body insulation	No failure.										
4	Insulation Resistance (I.R.)	Between lead wires	10000MΩ min.										
			The insulation resistance should be measured with DC500±50V within 60±5 s of charging.										
5	Capacitance	Within specified tolerance.	The capacitance should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max..										
6	Q	400+20C*2min. (30pF under) 1 000 min. (30pF min.)	The Q should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max..										
7	Temperature characteristic	+350 to -1 000ppm/°C (Temp. range: +20 to +85°C)	The capacitance measurement should be made at each step specified in Table.										
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th>Step</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th></tr> <tr> <td>Temp.(°C)</td><td>20±2</td><td>-25±3</td><td>20±2</td><td>85±2</td><td>20±2</td></tr> </table>	Step	1	2	3	4	5	Temp.(°C)	20±2	-25±3	20±2	85±2
Step	1	2	3	4	5								
Temp.(°C)	20±2	-25±3	20±2	85±2	20±2								
8	Strength of lead	Pull	Lead wire should not cut off. Capacitor should not be broken.										
		Bending	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N (5N for lead diameter 0.5mm), and keep it for 10±1 s. Each lead wire should be subjected to 5N (2.5N for lead diameter 0.5mm) of weight and bent 90° at the point of egress, in one direction, then returned to its original position, and bent 90° in the opposite direction at the rate of one bend in 2 to 3 s.										
9	Vibration resistance	Appearance	No marked defect.										
		Capacitance	Within specified tolerance.										
		Q	400+20C*2min. (30pF under) 1 000 min. (30pF min.)										
10	Solderability of leads	Lead wire should be soldered with uniformly coated on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 s. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires. Temp. of solder : 245±5°C Lead Free Solder (Sn-3Ag-0.5Cu) 235±5°C H63 Eutectic Solder										

*2 "C" expresses nominal capacitance value (pF)

Reference only

No.	Item	Specification	Test method															
11	Soldering effect (Non-preheat)	Appearance	No marked defect.															
		Capacitance change	Within $\pm 2.5\%$															
		Dielectric strength (Between lead wires)	Per item 3.															
12	Soldering effect (On-preheat)	Appearance	No marked defect.															
		Capacitance change	Within $\pm 2.5\%$															
		Dielectric strength (Between lead wires)	Per item 3.															
13	Humidity (Under steady state)	Appearance	No marked defect.															
		Capacitance change	Within $\pm 5\%$															
		Q	275+5/2C ² min. (30pF under) 350 min. (30pF min.)															
		I.R.	1000MΩ min.															
14	Humidity loading	Appearance	No marked defect.															
		Capacitance change	Within $\pm 5\%$															
		Q	275+5/2C ² min. (30pF under) 350 min. (30pF min.)															
		I.R.	1000MΩ min.															
15	Life	Appearance	No marked defect.															
		Capacitance change	Within $\pm 3\%$															
		Q	275+5/2C ² min. (30pF under) 350 min. (30pF min.)															
		I.R.	2000MΩ min.															
16	Temperature cycle	Appearance	No marked defect.															
		Capacitance change	Within $\pm 5\%$															
		Q	275+5/2C ² min. (30pF under) 350 min. (30pF min.)															
		I.R.	1000MΩ min.															
		Dielectric strength (Between lead wires)	Per item 3.															
<p>The lead wire should be immersed into the melted solder of $350\pm 10^\circ\text{C}$ (Body of $\phi 5$ and under: $270\pm 5^\circ\text{C}$) up to about 1.5 to 2.0mm from the main body for 3.5 ± 0.5 s. (Body of $\phi 5$ and under: 5 ± 0.5 s.) Post-treatment : Capacitor should be stored for 1 to 2 h at *¹room condition.</p>																		
<p>First the capacitor should be stored at $120+0/-5^\circ\text{C}$ for $60+0/-5$ s. Then, as in figure, the lead wires should be immersed solder of $260+0/-5^\circ\text{C}$ up to 1.5 to 2.0mm from the root of terminal for $7.5+0/-1$ s.</p>																		
<p>Post-treatment : Capacitor should be stored for 1 to 2 h at *¹room condition.</p>																		
<p>Set the capacitor for $500+24/-0$ h at $40\pm 2^\circ\text{C}$ in 90 to 95% relative humidity.</p> <p>Post-treatment : Capacitor should be stored for 1 to 2 h at *¹room condition.</p>																		
<p>Apply the rated voltage for $500+24/-0$ h at $40\pm 2^\circ\text{C}$ in 90 to 95% relative humidity. (Charge/Discharge current $\leq 50\text{mA}$.)</p> <p>Post-treatment : Capacitor should be stored for 1 to 2 h at *¹room condition.</p>																		
<p>Apply a DC voltage of 150% of the rated voltage for $1000+48/-0$ h at $125\pm 2^\circ\text{C}$, and relative humidity of 50% max.. (Charge/Discharge current $\leq 50\text{mA}$.)</p> <p>Post-treatment : Capacitor should be stored for 1 to 2 h at *¹room condition.</p>																		
<p>The capacitor should be subjected to 5 temperature cycles.</p> <p><Temperature cycle></p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th>Step</th> <th>Temperature($^\circ\text{C}$)</th> <th>Time</th> </tr> <tr> <td>1</td> <td>-25 ± 3</td> <td>30 min</td> </tr> <tr> <td>2</td> <td>Room Temp.</td> <td>3 min</td> </tr> <tr> <td>3</td> <td>$+125\pm 3$</td> <td>30 min</td> </tr> <tr> <td>4</td> <td>Room Temp.</td> <td>3 min</td> </tr> </table> <p style="text-align: right;">Cycle time : 5 cycle</p> <p>Post-treatment : Capacitor should be stored for 1 to 2 h at *¹room condition.</p>				Step	Temperature($^\circ\text{C}$)	Time	1	-25 ± 3	30 min	2	Room Temp.	3 min	3	$+125\pm 3$	30 min	4	Room Temp.	3 min
Step	Temperature($^\circ\text{C}$)	Time																
1	-25 ± 3	30 min																
2	Room Temp.	3 min																
3	$+125\pm 3$	30 min																
4	Room Temp.	3 min																


*1 "room condition" Temperature: 15 to 35°C , Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF)

6.Packing specification

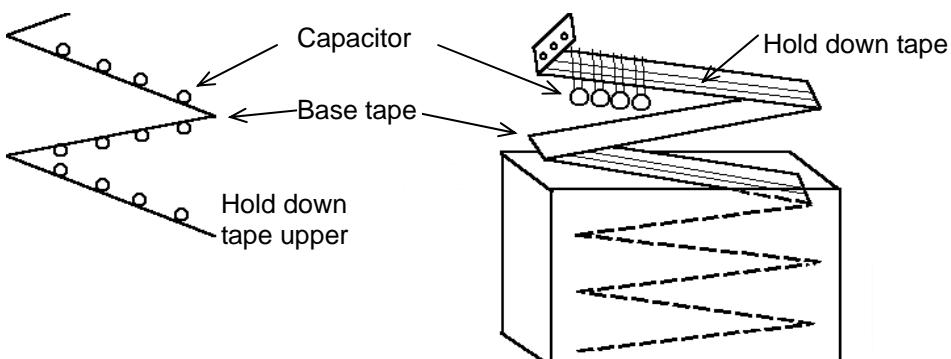
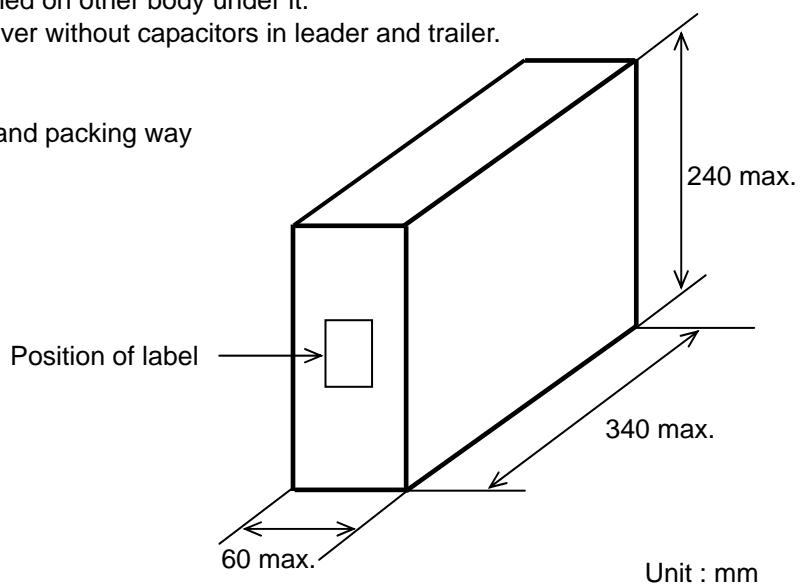
• Bulk type (Packing style code : B)

The size of packing case and packing way

$$\text{The number of packing} = \frac{\text{Packing quantity}}{\text{n}} \times n$$

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

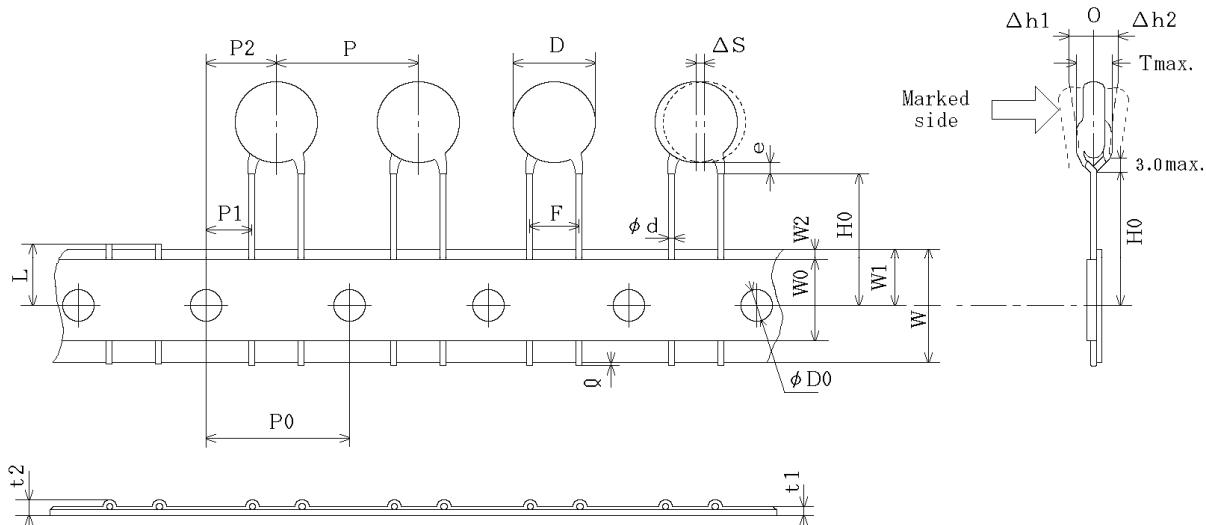


Note)

The outer package and the number of outer packing be changed by the order getting amount.

• Ammo pack taping type (Packing style code : A)

- The tape with capacitors is packed zigzag into a case.
- When body of the capacitor is piled on other body under it.
- There should be 3 pitches and over without capacitors in leader and trailer.

The size of packing case and packing way

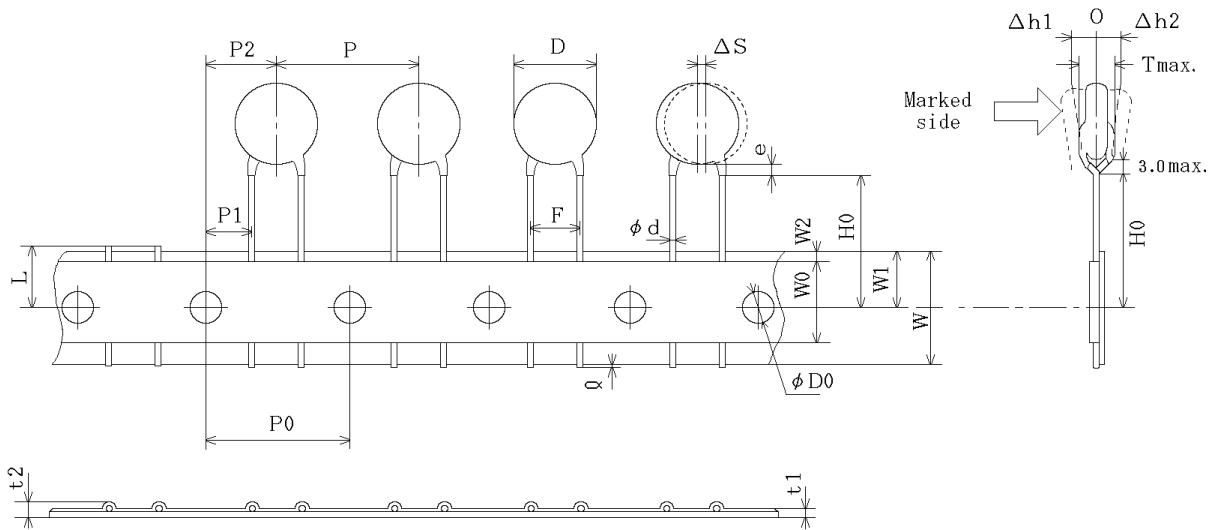

Reference only

7. Taping specification

7-1. Dimension of capacitors on tape

Vertical crimp taping type < Lead code : N2 >

Pitch of component 12.7mm / Lead spacing 5.0mm

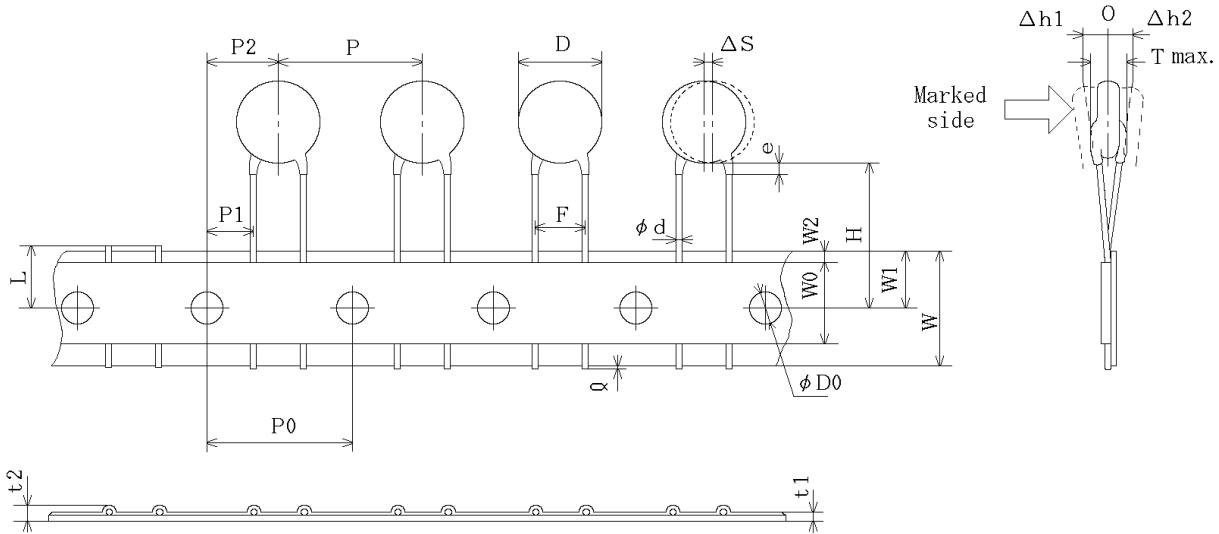


Unit : mm

Item	Code	Dimensions	Remarks
Pitch of component	P	12.7 ± 1.0	
Pitch of sprocket hole	P0	12.7 ± 0.3	
Lead spacing	F	5.0 ± 0.2	
Length from hole center to component center	P2	6.35 ± 1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85 ± 0.7	
Body diameter	D	Please refer to [Part number list].	
Deviation along tape, left or right	ΔS	0 ± 1.0	They include deviation by lead bend .
Carrier tape width	W	18.0 ± 0.5	
Position of sprocket hole	W1	9.0 ± 0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	H0	18.0 ± 2.0	
Protrusion length	Q	$+0.5 \sim -1.0$	
Diameter of sprocket hole	φD0	4.0 ± 0.1	
Lead diameter	φd	0.60 ± 0.05	
Total tape thickness	t1	0.6 ± 0.3	They include hold down tape thickness.
Total thickness, tape and lead wire	t2	1.5 max.	
Deviation across tape, front	Δh1	1.0 max.	
Deviation across tape, rear	Δh2		
Portion to cut in case of defect	L	11.0 ± 1.0	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5 ± 1.5	
Coating extension on lead	e	Up to the end of crimp	
Body thickness	T	Please refer to [Part number list].	

Reference only

Vertical crimp taping type < Lead code : N3 >
Pitch of component 15.0mm / Lead spacing 7.5mm

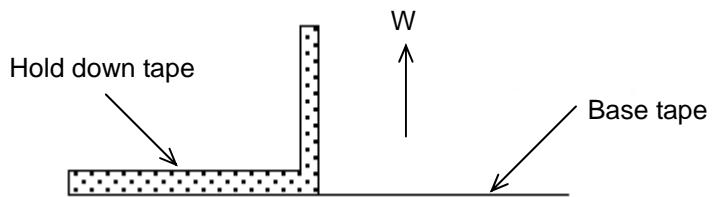


Unit : mm

Item	Code	Dimensions	Remarks
Pitch of component	P	15.0 ± 2.0	
Pitch of sprocket hole	P0	15.0 ± 0.3	
Lead spacing	F	7.5 ± 1.0	
Length from hole center to component center	P2	7.5 ± 1.5	
Length from hole center to lead	P1	3.75 ± 1.0	Deviation of progress direction
Body diameter	D	Please refer to [Part number list].	
Deviation along tape, left or right	ΔS	0 ± 2.0	They include deviation by lead bend .
Carrier tape width	W	18.0 ± 0.5	
Position of sprocket hole	W1	9.0 ± 0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	H0	18.0 ± 2.0	
Protrusion length	Q	$+0.5 \sim -1.0$	
Diameter of sprocket hole	φD0	4.0 ± 0.1	
Lead diameter	φd	0.60 ± 0.05	
Total tape thickness	t1	0.6 ± 0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	Δh1	2.0 max.	
Deviation across tape, rear	Δh2		
Portion to cut in case of defect	L	11.0 ± 1.0	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5 ± 1.5	
Coating extension on lead	e	Up to the end of crimp	
Body thickness	T	Please refer to [Part number list].	

Reference only

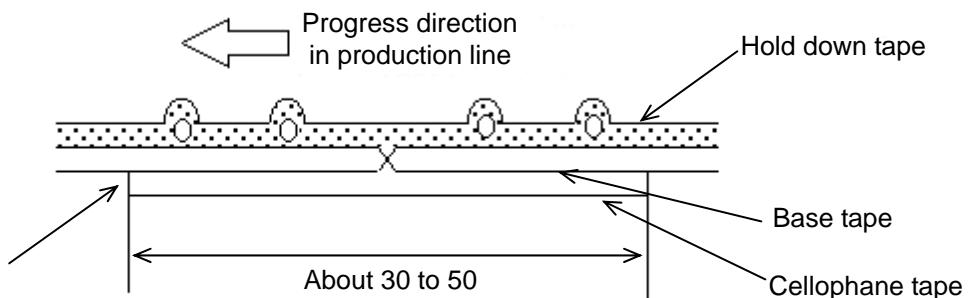
Straight taping type < Lead code: P2 >
Pitch of component 12.7mm / Lead spacing 5.0mm


Unit : mm

Item	Code	Dimensions	Remarks
Pitch of component	P	12.7 ± 1.0	
Pitch of sprocket hole	P0	12.7 ± 0.3	
Lead spacing	F	5.0 ± 0.2	
Length from hole center to component center	P2	6.35 ± 1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85 ± 0.7	
Body diameter	D	Please refer to [Part number list].	
Deviation along tape, left or right	ΔS	0 ± 1.0	They include deviation by lead bend .
Carrier tape width	W	18.0 ± 0.5	
Position of sprocket hole	W1	9.0 ± 0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	H	20.0 ± 1.0	
Protrusion length	Q	$+0.5 \sim -1.0$	
Diameter of sprocket hole	φD0	4.0 ± 0.1	
Lead diameter	φd	0.60 ± 0.05	
Total tape thickness	t1	0.6 ± 0.3	They include hold down tape thickness.
Total thickness, tape and lead wire	t2	1.5 max.	
Deviation across tape, front	Δh1	1.0 max.	
Deviation across tape, rear	Δh2		
Portion to cut in case of defect	L	11.0 ± 1.0	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5 ± 1.5	
Coating extension on lead	e	3.0 max.	
Body thickness	T	Please refer to [Part number list].	

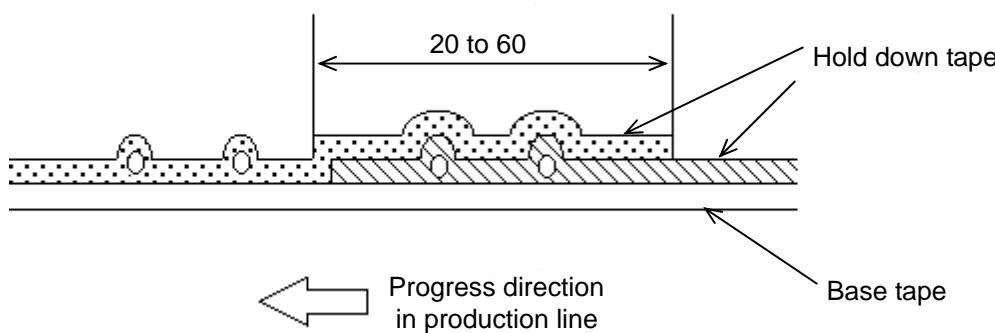
Reference only

7-2. Splicing way of tape


- 1) Adhesive force of tape is over 3N at test condition as below.

2) Splicing of tape

- When base tape is spliced


- Base tape should be spliced by cellophane tape.
(Total tape thickness should be less than 1.05mm.)

Unit : mm

- When hold down tape is spliced

- Hold down tape should be spliced with overlapping.
(Total tape thickness should be less than 1.05mm.)

Unit : mm

- When both tape are spliced

- Base tape and hold down tape should be spliced with splicing tape.

3) Missing components

- There should be no consecutive missing of more than three components.
- The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

EU RoHS
RoHS指令への対応

This products of the following corresponds to EU RoHS
当製品は以下の欧州RoHSに対応しています。

(1) RoHS

EU RoHS 2011/65/EC compliance
2011/65/EC(改正RoHS指令)に対応

maximum concentration values tolerated by weight in homogeneous materials

- 1000 ppm maximum Lead
- 1000 ppm maximum Mercury
- 100 ppm maximum Cadmium
- 1000 ppm maximum Hexavalent chromium
- 1000 ppm maximum Polybrominated biphenyls (PBB)
- 1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

鉛:1000ppm以下

水銀:1000ppm以下

カドミウム:100ppm以下

六価クロム:1000ppm以下

ポリ臭化ビフェニル(PBB):1000ppm以下

ポリ臭化ジフェニルエーテル(PBDE):1000ppm以下

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

DEA1X3D150JA1B	DEA1X3A150JA1B	DEA1X3F391JA3B	DEA1X3D391JA3B	DEA1X3A391JA2B
DEA1X3A100JA1B	DEA1X3D100JA1B	DEA1X3F180JCDB	DEA1X3F270JC3B	DEA1X3F150JCDB
DEA1X3A390JP2A	DEA1X3A101JN2A	DEA1X3D120J1AB	DEA1X3A120JA1B	DEA1X3A220JA1B
DEA1X3D220JA1B	DEA1X3F820JA3B	DEA1X3A820JA2B	DEA1X3D820JA2B	DEA1X3F330JC3B
DEA1X3A470JP2A	DEA1X3A221JN2A	DEA1X3A121JN2A	DEA1X3F390JC3B	DEA1X3D390JC1B
DEA1X3A390JC1B	DEA1X3D151JA2B	DEA1X3A151JA2B	DEA1X3F151JA3B	DEA1X3A220JD1B
DEA1X3D100JC1B	DEA1X3D330JC1B	DEA1X3A561JC3B	DEA1X3A180JC1B	DEA1X3D270JC1B
DEA1X3A150JC1B	DEA1X3D331JC3B	DEA1X3A680JC1B	DEA1X3A220JC1B	DEA1X3D150JC1B
DEA1X3F470JC3B	DEA1X3A120JC1B	DEA1X3A560JC1B	DEA1X3A100JC1B	DEA1X3A330JC1B
DEA1X3A470JC1B	DEA1X3D220JC1B	DEA1X3A270JC1B	DEA1X3A561JA3B	DEA1X3F181JA3B
DEA1X3A181JA2B	DEA1X3D181JA2B	DEA1X3D330JA1B	DEA1X3A330JA1B	DEA1X3A470JN2A
DEA1X3D470JA2B	DEA1X3D470JN2A	DEA1X3D560JN2A	DEA1X3D330JP2A	DEA1X3A220JP2A
DEA1X3D100JP2A	DEA1X3D270JA1B	DEA1X3A270JA1B	DEA1X3A470JA1B	DEA1X3F470JA3B
DEA1X3A820JN2A	DEA1X3A181JN2A	DEA1X3F331JA3B	DEA1X3A331JA2B	DEA1X3D331JA2B
DEA1X3D561JA3B	DEA1X3A561JA2B	DEA1X3A100JP2A	DEA1X3D471JA3B	DEA1X3F271JA3B
DEA1X3D271JA2B	DEA1X3A471JA2B	DEA1X3A271JA2B	DEA1X3D101JA2B	DEA1X3A101JA2B
DEA1X3F101JA3B	DEA1X3D120JD1B	DEA1X3F560JA3B	DEA1X3A560JA1B	DEA1X3D560JA2B
DEA1X3D220JP2A	DEA1X3D120JC1B	DEA1X3F220JCDB	DEA1X3F120JCDB	DEA1X3F121JA3B
DEA1X3F221JA3B	DEA1X3D121JA2B	DEA1X3D221JA2B	DEA1X3A121JA2B	DEA1X3A221JA2B
DEA1X3F100JCDB	DEA1X3D680JA2B	DEA1X3F680JA3B	DEA1X3D180JA1B	DEA1X3A180JA1B